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LATTICE ARRANGEMENTS FOR RAPID CONVERGENCE
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SUMMARY

A simple, systematic, optimized vortex-lattice approach is developed for
application to lifting-surface problems. It affords a significant reduction in
computational costs when compared to current methods. Extensive numerical
experiments have been ca.ried out on a wide variety of configurations, includ-
ing wings with camber and single or multiple flaps, as well as high-1ift jet-
flap systems, Rapid convergence as the number of spanwise or chordwise lattices
are increased is assured, along with accurate answers. The results from this
model should be useful not only in preliminary aircraft design but also, for
example, as input for wake vortex roll=-up studies and transonic flow calcula-
tions,

INTRODUCTION

The vortex-lattice method (VLM) for the analysis of lifting-surface aero-
dynamics has become a widely used technique during the past decade. Although
originally developed by Falkner in 1943 (ref. 1), it was not until the intro-
duction of high-speed digital computers in the early 1960's that the method was
reconsidered and extended, particularly by Rubbert (ref. 2). Since then, many
applications of the VLM have been made to problems of aerodynamic design and
analysis with considerable success,

The VLM represents a type of finite-element solution to lifting-surface
theory problems., As opposed to the alternate kernel-function approach, it
"seem(s) to possess none of the traditional values other than some approximation
to the calculus of infinitesimals" (ref. 3). Nevertheless, a number of compar-
isons between the two methods have been favorable overall,

Criticisms of the VLM have continued though. These usually contend elther
that the lattices can be laid out in a preconceived manner to give some desired
answer or that too many lattices are required for adequate convergence of the
computed loadings. The present study was undertaken to derive systematically
an optimized vortex-lattice layout which overcomes these objections and can be
adapted to a wide variety of confiqurations.

The philosophy of the approach is outlined briefly and then the numerical
results are presented,
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SYMBOLS

All lengths are dimensionless with respect to the wing root chord,

aspect ratio
induced drag coefficient
L lift coefficient
jet momentum coefficient
local wing chord
tip lattice inset distance, fraction of lattice span

flap chord/wing chord

number of chordwise vortices

c

d

E

K vortex drag factor, nACD/CL2

M

N number of spanwise vortices on wing semispan
T

total number of vortices
X,Y,2 right-handed Cartesian coordinates
x-center of pressure

wing semispan

X

Y

a angle of attack, degrees

B flap deflection angle, degrees
n

spanwise variable, y/yt

T jet deflection angle, degrees
THE VORTEX-LATTICE AFPROACH

The results presented here are based on the commonly used linearized anal=
ysis of thin lifting surfaces. The flow is considered to be steady, inviscid,
and incompressible (although this latter assumption can readily be relaxed by
using the Gothert transformation), While this strictly limits the study to
attached flows with small deflections, the basic model has proved its useful-
ness in many extended applications because of its simplicity and the general
agreement with experimental data.

The typical mechanics of the lattice layout, the mathematical details, and
the computations of the resulting loads will not be discussed here, as they are
assumed familiar or can be found in other reports (e.3j., refs., 2,4,5). Rather,
the focus of the analysis will be on deriving the optimized lattice structure
which results in an accurate, cost-efficient approach to performance prediction
for a wide variety of configurations, including wings with flaps and jet-flap
systems.,
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Before proceeding with the details of the optimized VLM, a word about the
"accuracy" (or lack of it) of these finite-element approaches is in order. It
should be remembered that with the assumptions employed, we are in effect solv-
ing a particular boundary-value problem, and a unique solution exists. Hence,
all properly formulated finite-element analyses (or assumed loadirg-function
approaches) based on this model should give results which converge to this solu-
tion as the number of unknowns is increased indefiniteiy. There are of course
some differences in the ease of application and computational effort involved
in the various approaches, but what ultimately distinguishes their merits is how
rapidly the results converge to the correct answer. This shouid be explored
numerically for a number of configurations in order to give the ultimate user
some degree of confidence in the particular prediction technique.

Since no exact solutions exist (except for the circular wing), determina-
tion of ji'st what is the 'correct' answer rests entirely upon comparison between
two or more different theoretical approaches to the same problem, Thus, in wnis
sense, a favorable comparison of analytical results with particular experimental
data does not guarantee that the method is 'accurate'. Rather, once some degree
of accuracy is established through numerical experimentation and agrecment with
other analyses, comparison with experiment should be used to verify the range of
validity of the linearized thin-wing theory model. |In cases where agreement is
not good, it indicates that a better basic model is required.

HUMERICAL RESULTS
Rectangular Planforms

We first consider the case ot an uncambered rectangular wing at angle of
attack o, which will serve to illustrate some of the optimized lattice features.
A right-handed xyz-coordinate system is chosen such that x is positive in the
freestream direction and the origin is located at the wing root leading edge.
For convenience, the wing root chord is normalized to unity, that is, all
lengths are dimensionless with respect to the root chord. Tnen this wing geom=
etry s completely described by y_, the y-coordinate of the wing tip (or
equivalently by the aspect ratio &).

The cor.ventional lattice layout for this case (ref. §5) is to use uniformly
spaced chordwise and spanwise panels which cover the whole wing. While the
computed loads converge, they do so somewhat slowly with respect to the number
of spanwise vortices. However, this can be accelerated by emrloying equally
spaced lattices which are inset from the tip by a fraction d of the lattice
span (0gd<1), (See fig. 1.) Such an idea was first suggestad in reference ?
and was subsequently shown (ref. 6) to afford a marked improvement in spanwise
convergence,

This is demonstrated in figure 2 where the percent error in the lift-curve
slope per radian CLQ is plotted as a function of the number of vortices on the
semispan N for A = 2 and A = 7. The baseline data which are ccnsidered to be
"exact" for these cases were taken from references 7 and 8, where careful calcu-
lations were carried out based on the kernel-function approach. It is seen that
the use of d = 1/4 dramatically improves the convergence. In fact, for one
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percent accuracy in CL., only 5 spanwise vortices need to be used when d = 1/4
as opposed to about 35 when d = 0. Since the computational effort increases as
between the square and cube of the number of unknowns, this represents possibly
a two order of magnitude cost savings.

A key calculaticn which further reveals the advantages of spanwise lattice
insetting is that of the lift-induced drag. This quantity may be computed by
either a near or a far field approach. The latter is based on the work of Munk,
in which a Trefftz-plane analysis is used to express the induced-drag coefficient
Cp in terms of the Fourier coefficients of the spanwise lift distribution., This
has the advantage of relative simplicity (assuming the lift distribution is
accurate) but cannot be used to find the spanwise variation of Cp- On the other
hand, the near field approach is more demanding of computer time, but does yield
this spanwise variation., For the near field computation, wve have found it best
to use the direct method of summing the forces in the freestream direction on
each bound vortex element, neglecting the influence of a bound element on itself,
(See also ref. 9.)

In figure 3, the vortex drag factor K = nACD/CL2 by both the near and far
field methods is shown for the A = 2 wing as a function of N with d = 0 and
d = 1/4. The convergence as N is increased is displayed more clearly by plotting
K against 1/N. Again, the great improvernent in using d = 1/4 is evident, along
with the remarkable accuracy of the near field calculation. Further, for no
insetting (d = 0), we see that to require very close agreement in the near and
far field drags is doomed to failure unless an abnormally large number of span-
wise vortices are used, The tendency of the VLM to 'predict' low values of K
(see ref. 9) is thus shown to be a consequence of not using the optimum lattice
inset arrangement.

To illustrate the effect of varying the number of chordwise vortices M, the
corresponding variation of K and the x-center of pressure X, are plotted in
figure 4, Note that K is independent of M for M>2 (whether Br not insetting is
used), while Xcp is nearly linear in 1/M2 and tip insetting does not improve its
convergence rate., For this A = 2 wing, the estimated converged values are
CLy = 2.L474, x 5 = 0.2094, and K = 1,001, which are in excellent agreement with
those obtained using the kernel-function approach (refs. 7 and 8) of CL, = 2.474b4
and xc, = 0,20939.

These calculations have been made for an inset distance of one-guarter of
a lattice span. A number of tests were made for other values of d, and it is
found that d = 1/4 represents approximately the optimum value. As is usual in
the VLM, the bound vortices are located at the local lattice quarter chord, and
the tangential flow boundary cordition satisfied at the local three-quarter
chord midway between the trailing vortices. These positions were suggested by
two-dimensional results and have been used by Falkner and all who followed. It
can be shown that they are mandatory for the three-dimensional case as well

(ref. 6).

Several other comments can be made regarding the overall lattice arrange-
ment, First, the use of nonuniform chordwise spacings which bunch the lattices
near the leading and/or trailing edges where the variation in vorticity is lar-
gest has been investigated. It is found for these uncambered wings that the
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uniform chordwise spacing is just as good. Next, various types of nonuniform
spanwise spacings (with and without insetting) were also tried, and again the
equal span lattice arrangement with d = 1/4 is always superior. Finally, it

has been suggested that the results from the VLM will be unreliable when indi-
vidual lattice aspect ratios drop below a certain value, usually unity. However
the calculations here have been carried out using lattice aspect ratios as low
as 0.08 with no degredation in accuracy, thus destroying this myth.

Not only the overall loads, but also the spanwise aistributions of 1ift,
center of pressure, and induced drag are in excellent agreement wich kernel-
function results when the optimized layout is used. Regarding computational
effort, we find that the execution time rises nearly as the square of the total
number of lattices T = MxN up to about T = 80, and then increases to become pro-
portional to N3 above about T = 120. Calculation of the near field drag in-
creases the basic computational time by approximately 40%. Still, because of
the very small number of lattices required (less than 30 for 1/2% convergence
in CLa)’ computing costs are minimal,

For rectangular planforms, the only parametric study which can be made is
on the effect of the aspect ratio A. This was carried out and several interest-
ing features are observed. For example, the induced drag has a maximum at
A = 3.5, and the y-center of pressure on the half wing remains very nearly con-
stant, Using a least squares analysis, an attempt to approximate the relation-
ship between CL, and A along the lines of the classical high and low aspect
ratio results yields the formula

27A
Cly = 73 (1)

This is within 1% of the correct value for 163A%2,5 and agrees exactly with
equation (7-52) of reference 10 for rectangular wings. A somewhat more accurate
formula valid down to A = 1 was also found and is shown in figure 5,

Cambered Sections

Since most wing sections have some nun-zero camber, it is worthwhile to
look at the optimal lattice layout for this case. The study was restricted to
rectangular wings with constant spanwise mean lines. However, the conclusions
should be applicable to more complicated geometries. Generally, airfoil mean
lines are characterized by large negative slopes near the leading edge, and we
anticipate that the chordwise lattice spacing is crucial here.

As an example case, an A = 5 wing having an NACA 230 mean line was studied
since some results for this case have already been presented (ref. 11). Calcu-
lations were made both for the uniform chordwise spacing and for a cosine-type
spacing which concentrates the lattices near the leading edge where the change
in slope is greatest. The results for C_ are shown in figure 6 as a function
of 1/M2 for o = 0°, It is seen that the cosine spacing converges more rapidly
and so is preferable. The estimated converged value is C = 0.077 which agrees
well with the Tulinius result reported in reference 11.

For cambered wings then, it is suggested that a nonuniform chordwise spac-
ing be used for better accuracy. It should be remembered though, that the lift
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due to angle of attack will generally be many times larger than the camber con-
tribution and hence errors in computing the camber-induced 1ift will be somewhat )
submerged. Thus, for the example case considered at « = 8°, the lift due to a /
is nearly 8 times that due to camber, and the total lift calculated using the

uniform chordwise spacing for M = 4 differs by only 1.5% from the cosine spacing
result.

Swept Tapered Planforms

The optimized VLM is readily extended to swept tapered wings by insuring
that the bound portion of eact horseshoe vortex is aligned with the local lattice
quarter chord. As the example planform here, we choose the Warren-12 wing,
which has been analyzed previously (refs. 7 and 12). It is defined by the
x-coordinates of the tip leading and trailing edges of 1.27614 and 1.60947, res-
pectively, and y, = 0.94281. This gives a taper ratio of 1/3 and an aspect ratio
of 2.8284. In figure 7 we show the convergence of the lift-curve slope C;, as a
function of 1/N for several values of d. As before, it is seen that d = /4 pro-
vides about the fastest convergence rate. From this and other planform results,
it turns out that the optimum value of d varies slightly with the aspect ratio
and sweep angle, but that choosing d = 1/4 is the best compromise for all cases.

The variation of x., with M and N for this wing is similar to that for rec-
tangular planforms, so tﬁat convergence is somewhat slower with respect to M.
For the induced drag, both the near and far field calculations were made as
before. This time, however, we find that the computed near field drag varies with
both M and N, more especially with the former and that K is always less than
unity. This poorer drag convergence for swept wings has been noted many times in
the past, and arises from the discontinuity in the bound vortex slopes at the wing
root. Tulinius (ref. 13) studied this problem and concluded that vortex-lattice
approaches which use swept vortices always predict the downwash incorrectly in
such regions (or near wing crank locations), but that the error is confined to
the immediate neighborhood of the discontinuity. He also showed that the near
and far field drag calculations should give identical answers when the bound
vortex elements are atl parallel.

There is a simple way to improve the near field convergence and accuracy. '
Suppose we have solved for the local bound vortex strengths using the appropri-
ate swept horseshoe vortex elements. Then, to¢ compute the drag, we must find
the sum of the products of the local vortex strengths and the induced downwash
at the bound vortex midpoints. Now, though, assume that the downwash is com=
puted using rectangular horseshoe vortices whose strengths are the same as the
swept elements which they replace. The results of such a calculation are shown
in figure 8 where K is plotted against 1/M and compared with the result using
fully swept vortices and also the far field calculation., It is evident that
using rectangular elements for the drag calculation only is the answer to the
problem. Not only is the dependence on M eliminated, but as it turns out, also
the dependence on N. Further, the far field calculations for increasing N
converge to this near field value.

While this approach has given a stable answer for the total induced drag,

there is still some room for improvement in the convergence of the spanwise
drag distribution, ch/ECD (where Cq is the local drag coefficient and c is the
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average chord). As shown in figure 9, the regions near the root and tip converge
more slowly, and further study of this problem is needed. It is interesting to
note that there is very little difference in the spanwise drag distribution curves
for computations made with the rectangular or the swept vortex elements,

The kernel-function approaches also encounter similar difficulties for swept
wings., In those analyses, the concept of artificial rounding at the root is
often introduced, but only partially alleviates the problems (refs. 7 and 12).

The estimated converged values for this Warren-12 wing are cLa = 2.74,
Xep = 0.751, and K = 1,008, The corresponding results from reference 7 are
CLg = 2.75 and x¢p = 0.753, while from reference 12, € = 2.74 and K = 1.010,
Again, the agreement is excellent. Here too, only a few lattices are required
for accurate answers, e.g., a total of 30 lattices gives better than 1/2% agree-
ment with the converged result.

This optimized layout has been used to study the properties of a number of
different combinations of sweep and taper, including delta planforms. In all
cases, rapid convergence and accurate results were obtained,

Other Planforms

A number of other wing planform arrangements have been studied to give fur-
ther guidelines for the optimized lattice structure. Consider for example a
cranked wing which has one or more discontinuities in the leading or trailing
edge sweep angles, Here it is of interest to examine how the spanwise lattices
should be laid out since in only a few very special cases will it be possible to
use equally spaced lattices across the whole wing and keep d = 1/4, As a test
case, a planform having both leading and trailing edge cranks located at the
midspan (0.5 y,) with A = 3,478 was chosen. Then N, vortices were used inboard
of the crank and N, outboard. The tip inset was set at 1/L4 of the outboard lat-
tice span. Figure 10 shows the convergence of C;_ with 1/N, (N = Ny + Nz), for
Ny = 0.5N2, N] = Nz, and Ny = 2Ny. Although all three arrangements appear to be
converging to the same value, the fastest rate is realized with Nj = Ny or
approximately equal inboard and outboard lattice spans.

Computations with other cranked wings have confirmed this finding; hence,
N1 and Ny should be chosen to give as nearly equal lattice spans across the wing
as possible. This rule is readily extended to wings with more then one span-
wise crank location. Also, the induced drag should be calculated using the re-
placement rectangular vortices.

Other configuraticns which have been treated include skewed wings and planar
interfering surfaces. In the former case, the symmetry with respect toy is
destroyed and so the entire wing must be considered rather than just the semi-
span., While more vortices are required for a given accuracy, the concept of tip
insetting with d = 1/4 still is needed for rapid convergence. Regarding the
planar interfering surfaces, tip insetting is beneficial here also (on both of
the wings), but an additional source of trouble is now present., This occurs if
one or more trailing vortex lines from the forward surface pass sufficiently
close to a control point on the aft surface where the local boundary condition
is satisfied. Then, their influence becomes unduly magnified, with irrationa’

[
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results. To overcome this instability, It is imperative to select the number of
spanwise vortices on each wing carefully so that all the trailing vortices from
the forward surface lie approximately on top of the trailing vortices from the
aft surface. It is recommended that calculations for several combinations of
spanwise vortices be carried out for each case to insure consistent answers.

Wings With Flaps

Although performance predictions for flapped wings using the VLM have re-
ceived some attention, no detailed convergence studies are available. Indeed,
from the results reported to date, it appears as if several hundred lattices are
necessary to insure reasonable accuracy. The basic difficulty with flapped
wings is that the loading is singular at the flap hingeline, and so a large num-
ber of chordwise vortices must be used to define the loading adequately in that
region. Even the use of nonuniform cosine spacing about the hingeline does not
improve the slow convergence with respect to M.

An optimized lattice arrangement has been developed which considerably re-
duces the number of unknowns required. For convenience in demonstrating the
lattice layout, consider the simple case of a rectangular wing with a full-span
trailing edge flap. The flap chord is taken as constant and equal to E, and
the flap has a deflection angle B. As usual, the convergence with respect to N
is accelerated by tip lattice insetting with d = 1/4, For the chordwise arrange-
ment, we place bound vortex elements directly on the hingeline itself. This was
apparently first proposed by Rubbert (ref. 2) but has not been widely used,
possibly because few details or numerical results showing its benefits were
given. As a result of placing bound vorticity on the hingeline, a finite load-
ing is carried there, as opposed to the theoretically infinite value. However,
the integrated loading on a non-zero chordwise element about the hingeline is
finite in both cases.

The power of this hingeline-vortex approach was demonstrated initially in
the two~dimensional case, There, convergence was greatly improved over the con-
ventional approach, and the results are as good as those obtained using the
quasi-continuous lifting-surface analysis of Lan (ref. 14). Calculations for
the three-dimensional case are shown in figure 11, for a wing with A = 4 and
E=0.4. It is seen that the convergence of the lift-curve slope C , is ex-
tremely good when vorticity is placed on the hingeline. From these and other
computations, we conclude that less than 100 lattices are sufficient to achieve
highly accurate results. This represents a substantial savings in computational
effort.

Part-span flaps can be analyzed in a similar manner. That is, bound vor-
ticity is placed along the flap hingeline and extended as necessary to the root
and/or tip. The practice of insetting the vortices at the flap side edges was
also recommended in reference 2, but numerical calculations here have shown that
not only the local, but also the overall, loadings are highly sensitive to such
an arrangement. Possibly the concept may be worthwhile in that nonlinear treat-
ment, but it should be avoided when using the linearized approach.

This optimized VLM can be extended to treat wings with multiple flaps.
These can be arranged in either chordwise or spanwise directions. For the
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multiple chordwise flap case, it is necessary to place bound vortex segments on
each of the flap hingelines to insure rapid convergence. The performance of
leading edge high-1ift devices can also be investigated using these layouts.

While there is a scarcity of good numerical results for comparison purposes,

one kernel-function calculation should be mentioned. |In reference 15, Garner
analyzed a swept untapered wing of aspect ratio 4 with a 25% chord flap extend-
ing from the 45% spanwise station out to the tip. Using the kernel=function
method, he predicted a value of CLg = 0.758 and Cp = 0.179. With the optimized
VLM and 91 unknowns, C o = 0.757 and Cp = 0.180. Here, 7 chordwise vortices

(5 ahead of the hingeline and | behind? and 13 spanwise vortices (6 inboard and
7 on the flap) were employed. Also, the spanwise 1ift distribution compared
very well for this case.

Finally, to show the versatility of this approach, the predicted spanwise
lift distribution on a cranked tapered wing (approximating the Convair 990 plan-
form) at 12° angle of attack with multiple spanwise flaps is plotted in figure
12, Here the seven flaps were deflected through various angles as shown in an
attempt to produce a nearly linear dropoff in the loading over the outer half
of the wing. Such loadings are of interest in wake vortex roll=-up calculations.

Jet-Flap Wings

The optimized VLM has also been applied to predict jet-flap wing perfor~-
mance, The jet flap is basically an arrangement for integrating the propulsion
system of an aircraft with its 1ift production by blowing a narrow jet of high-
velocity air from a slot at the wing trailing edge. This deflected jet, besides
supplying thrust, also increases the lift through an additional induced circu-
lation as well as by a reaction to its vertical momentum. The additional circu-
lation, or supercirculation as it is sometimes called, arises from the asymmetry
induced in the main stream by the presence of the jet and can amount to a large
fraction of the total 1ift on the wing under certain conditions.

Within the linearized theory framework, the trailing jet sheet can be
represented by vortex lattices and the appropriate dynamic boundary condition
satisfied at corresponding control points. We will consider only the so-called
"singular blowing' configuration in which the jet leaves at an angle T with
respect to the slope of the camberline at the trailing edge. The jet st igth
is described by the parameter Cg(y), the jet momentum coefficient., The fc.low-
ing results are taken from reference 16 wherein a complete performance ana.ysis
was carried out. This work was sponsored by NASA ARC under Contract NAS2-8115,

As in the pure flapped wing, the jet-flap loading exhibits a singular be~
havior. Here, it is at the trailing edge where the streamline deflection
changes abruptly. Thus, in analogy with the plain flap case, we try placing
bound vorticity along the wing trailing edge. This was again verified to give
good convergence characteristics in the limiting two-dimensional problem., In
addition, it turns out to be necessary to use a nonuniform chordwise spacing
which concentrates the lattices near the trailing edge. This does have the
advantage that the infinite downstream extent of the jet sheet can be mapped
into a finite region.
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In figure 13, the convergence behavior of the lift-curve slope CLT is plot-

ted for full-span blowing from a rectangular wing with A =2 and €, = 1. The
superiority of placing bound vorticity at the trailing edge is clear. Note that
the 1ift on the wing is computed by adding the jet reaction component to the
wing bound vortex, or circulation, 1ift. The numerical experiments indicate it
is best to consider all of the trailing edge vortex lift applied to the wing, as
shown in the figure. Overall, we must use a somewhat larger number of chordwise
vortices for the jet flap, but again the total number required is considerably
smaller than used in previous studies.

For the above wing, the estimated converged values are C . = 2.00 and
Xcp = 0.816. These can be compared with the results obtained in reference 17
by using an adaptation of Lawrence's improved low aspect ratio approximation,
where it was calculated that C;_=2.01 and x. = 0,810, Comparable agreement
was found at other values of A and C, for these rectangular planforms.

Other planforms and blowing arrangements have also been treated. Thus,
part-span blowing was analyzed and y-variations in C, (nonuniform blowing) were
taken into account. An exampie calculation for nonuniform blowing over part of
the wing span is illustrated in figure 14. |In this case, the jet extended from
the 25% to the 75% spanwise station, and Cp varied quadratically in this region,

An interesting result of the noruniform blowing calculations is that the
wing circulation 1ift as well as its spanwise distribution is relatively unaf-
fected by varying C, provided that the total, or integrated, jet momentum coeffi-
cient is the same for both cases. Thus, we can conclude that for most practical
purposes, it will be sufficient to carry out nonuniform blowing catculations
for the corresponding uniform blowing case with the same total jet coefficient,
and then add in the true nonuniform jet reaction components to find the total
lift, center of pressure, etc., at each spanwise location,

CONCLUSIONS

In conclusion, a simple, systematic optimized vortex-lattice layout has
been developed for application to a wide variety of configurations. It results
in a significant reduction in computational costs when compared to current meth-
ods. The key elements are:

(a) Use of tip lattice insetting to accelerate convergence as the number of
spanwise lattices is increased.

(b) Placement of bound vortices at locations where discontinuities in
streamline slope occur (flap hingeline, jet-flap trailing edge) to accel-
erate convergence as the number of chordwise vortices is increased,

(c) Use of nonuniform chordwise spacing for -ambered sections and jet-flap
wings to accelerate convergence for these cases.

(d) Use of rectangular horseshoe vortices to compute the near field drag.

Rapid convergence as the number of spanwise or chordwise lattices are in-
creased is assured, along with accurate answers, The results from this model
should be useful not only in preliminary aircraft design but also, for example,
as input for wake vortex roll-up studies and transonic flow calculations.
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Figure 1.- Vortex-lattice layout.
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Figure 3.- Comparison of near and far field induced drag.
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Figure 4.- Convergence behavior for rectangular wing.
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o LIFTING-LINE THEORY (PRANDTL) — HIGH ASPECT RATIO, ELLIPTIC PLANFORM

_271A

e Tan2

e LOW ASPECT RATIO THEORY (JONES)
_2nA
e A+a

CL

o NUMERICAL LIFTING-SURFACE THEORY (HOUGH) — RECTANGULAR PLANFORM
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Figure 5.- Lift-curve slope formulas.,
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Figure 6.~ Convergence for cambered wing.
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Figure 7.~ Lift-curve slope convergence for tapered wing.
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Figure 10.- Lift-curve slope convergence for .ranked wing.
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Figure 11.- Lift-curve slope convergence for flapped wing.
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